3. In case a second parameter is believed to influence productivity,
a design of experiment (DoE) reduces experimental load.
4. Obtained effects of productivity at given temperature can then
be applied for continuous cultivation.
References
1. Glaser JA (2015) Continuous chemical pro-
duction processes. Clean Techn Environ Policy
17(2):309–316.
https://doi.org/10.1007/
s10098-015-0903-3
2. Burcham CL, Florence AJ, Johnson MD
(2018) Continuous manufacturing in pharma-
ceutical
process
development
and
manufacturing. Annu Rev Chem Biomol Eng
9:253–281.
https://doi.org/10.1146/
annurev-chembioeng-060817-084355
3. Lee SL, O’Connor TF, Yang X, Cruz CN,
Chatterjee S, Madurawe RD et al (2015) Mod-
ernizing Pharmaceutical Manufacturing: from
Batch to Continuous Production. J Pharm
Innov
10(3):191–199.
https://doi.org/10.
1007/s12247-015-9215-8
4. Herbert D, Elsworth R, Telling RC (1956)
The continuous culture of bacteria; a theoreti-
cal and experimental study. J Gen Microbiol 14
(3):601–622.
https://doi.org/10.1099/
00221287-14-3-601
5. Monod J (1949) Adaptation, mutation and
segregation in relation to the synthesis of
enzymes by bacteria. Biochem J 44(3):xix
6. Monod J (1949) The growth of bacterial cul-
tures. Annu Rev Microbiol 3(1):371–394.
https://doi.org/10.1146/annurev.mi.03.
100149.002103
7. Novick A, Szilard L (1950) Description of the
chemostat.
Science
112(2920):715–716.
https://doi.org/10.1126/science.112.2920.
715
8. Novick A, Szilard L (1950) Experiments with
the chemostat on spontaneous mutations of
bacteria. Proc Natl Acad Sci U S A 36
(12):708–719.
https://doi.org/10.1073/
pnas.36.12.708
9. Novick A, Szilard L (1951) Experiments on
spontaneous and chemically induced mutations
of bacteria growing in the Chemostat. Cold
Spring Harb Symp Quant Biol 16:337–343
10. Kopp J, Slouka C, Spadiut O, Herwig C
(2019) The Rocky Road From fed-batch to
continuous processing with E. coli. Front
Bioeng Biotechnol 7:328
11. Rugbjerg P, Sommer MOA (2019) Overcom-
ing genetic heterogeneity in industrial fermen-
tations.
Nat
Biotechnol
37(8):869–876.
https://doi.org/10.1038/s41587-019-0171-
6
12. Buerger J, Gronenberg LS, Genee HJ, Sommer
MOA (2019) Wiring cell growth to product
formation. Curr Opin Biotechnol 59:85–92.
https://doi.org/10.1016/j.copbio.2019.02.
014
13. Rugbjerg P, Myling-Petersen N, Porse A,
Sarup-Lytzen
K,
Sommer
MOA
(2018)
Diverse genetic error modes constrain large-
scale bio-based production. Nat Commun 9
(1):787.
https://doi.org/10.1038/s41467-
018-03232-w
14. Schreiber F, Littmann S, Lavik G, Escrig S,
Meibom A, Kuypers MMM et al (2016) Phe-
notypic heterogeneity driven by nutrient limi-
tation
promotes
growth
in
fluctuating
environments.
Nat
Microbiol
1(6):16055.
https://doi.org/10.1038/nmicrobiol.
2016.55
15. Ackermann M (2015) A functional perspective
on phenotypic heterogeneity in microorgan-
isms.
Nat
Rev
Microbiol
13(8):497–508.
https://doi.org/10.1038/nrmicro3491
16. Delvigne F, Baert J, Sassi H, Fickers P,
Gru¨nberger A, Dusny C (2017) Taking control
over microbial populations: current approaches
for exploiting biological noise in bioprocesses.
Biotechnol
J
12(7):1600549.
https://doi.
org/10.1002/biot.201600549
17. Peebo K, Neubauer P (2018) Application of
continuous culture methods to recombinant
protein production in microorganisms. Micro-
organisms 6(3):56. https://doi.org/10.3390/
microorganisms6030056
18. Kittler S, Kopp J, Veelenturf PG, Spadiut O,
Delvigne F, Herwig C et al (2020) The Lazarus
Escherichia coli effect: recovery of productivity
on glycerol/lactose mixed feed in continuous
biomanufacturing. Front Bioeng Biotechnol
8:993
19. Vogel
JH,
Nguyen
H,
Giovannini
R,
Ignowski J, Garger S, Salgotra A et al (2012)
A new large-scale manufacturing platform for
complex
biopharmaceuticals.
Biotechnol
Bioeng
109(12):3049–3058.
https://doi.
org/10.1002/bit.24578
238
Julian Kopp and Oliver Spadiut